
Estimating Software Development Effort using UML

Use Case Point (UCP) Method with a Modified set of
Environmental Factors

Pragya Jha1, Preetam Pratap Jena2, Rajani Kanta Malu3

School of Computer Engineering, KIIT University,

Bhubaneswar, Odisha1,2,3

Abstract - Software developers frequently depend on use cases to
describe the business processes of object- oriented projects.
Since use cases consists of the strategic goals and scenarios that
provide value to a business domain, they can also provide insight
to a projects complexity and required resources. The traditional
models for cost estimation are no longer used effectively due
rapid changes in technology. UML based Use case point is found
to be robust one for the cost estimation having no influence of
complexity of language, complexity of development platforms
etc. Calculating the software development effort using Use Case
Point method is found to be a suitable method. Many of the
authors have done remarkable work on effort estimation using
use case points by considering the external technical factors and
environmental factors. In this paper the authors attempted to
modify the environmental complexity factors to obtain precise
and accurate result.

Keywords: Use Case Point, Software Cost Estimation,
Environmental Factors

I. INTRODUCTION

Software estimates are very important in the context of
software engineering as a means to derive effort, cost and
size of a project, thus helping with the decision of whether
the project is worth developing or not. Several cost
estimation models are proposed by various researchers, but
many of them became outdated because of the rapid changes
in technology. An accurate and reliable estimation is difficult
to obtain because of the lack of detailed information about the
system to be developed, in the early stages of software
development. Cost estimation models like COCOMO [1,2]
and size estimation models like Function Point analysis are
well known and frequently used in literature. These models
were applicable only to procedural paradigm, and are not
directly applicable to software products developed using the
object oriented methodology or real time systems. With
object orientation, use cases emerged as a dominant
technique for structuring requirements. This technique was
integrated into the Unified Modeling Language (UML) and
Unified Process and became the de facto standard for
Software requirements modeling [3]. It is this idea that gave
birth to the creation of Use Case Point (UCP) metrics,
originally developed by Gustav Karner[4]. In this method,

Gustav Karner attempted to estimate the project size by
assigning points to use cases, like in the same way, FPA
assigns points to functions [4]. Use Case Point is simple, and
it has more accuracy than lines of code or DELPHI (expert
experience method), it avoid quite a difference results in the
same project caused by different estimating personnel[5].

II. AIMS AND OBJECTIVES

The main objective of this research is to make the result of
the UCP method more accurate and precise by adding the
following environmental factors.:

 Client Type
 New Technology
 Team Co-ordination
 Organisation library availability
 Team Composition
 Growth Rate of Organization

III. USE CASE POINT METHOD

The UCP method is the extension of Function Point method
with the benefit of requirement analysis in the object-oriented
process. It starts with measuring the functionality of the
system based on the use case model in a count called
Unadjusted Use Case Point (UUCP). The same technical
factors are used as of Function Points. A new factor called
Environmental Factor is proposed by the author[4]. The
author defined the Use Case Points (UCP) as the product of
these three factors (i.e. UUCP, Technical Factors and
Environmental Factors). The UCPs shows an estimation of
the size of the system which can further mapped to man hours
in order to calculate the effort required to develop the
system[4].To estimate the size of software using this method,
several rules should be applied. These rules include :

1. Identify the complexity of each use case.
2. Assign a weight factor for each level of Complexity for

use cases .

Pragya Jha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 2742-2744

www.ijcsit.com 2742

TABLE I. USE CASE CLASSIFICATION [4]

Use Case Type Description Weight
Simple Less than 3 transactions 5
Average 4 to 7 transactions 10
Complex More than 7 transactions 15

3. Identify the complexity of each actor .
4. Assign a weight factor for each level of complexity for

actors .
TABLE II. ACTOR CLASSIFICATION [4]

Actor Type Description Weight
Simple System Application Programming

Interface (API)
1

Average Interactive or Protocol-Driven Interface 2
Complex Graphical Interface (GUI) 3

5. Calculate the total use case weight factor

(UseCase_WeightFactor):
∑ Simple use cases * WF + ∑ Average use cases * WF + ∑

Complex use cases * WF
6. Calculate the total actor weight factor

(Actor_WeightFactor) :
 ∑ Simple actor * WF + ∑ Average actor * WF + ∑

Complex actor * WF
7. Calculate the Unadjusted Use Case Points (UUCP):
 UUCP = UseCase_WeightFactor +

Actor_WeightFactor
8. Calculate the Adjustment Use Case points (AUCP):
 AUCP = UUCP * TF * EF
where
 TF is the Technical Factor.
 TF = 0.6 (0.01 * TWF)
 EF is the Environment Factor.
 EF = 1.4 + (-0.03 * EWF)

TABLE III. TECHNICAL COMPLEXITY FACTORS [4]

iF

Factors Contributing to Complexity Wi

F1 Distributed systems. 2

F2
Application performance objectives, in
either response or throughput.

1

F3 End user efficiency (on-line). 1

F4 Complex internal processing. 1

F5 Reusability, the code must be able to reuse
in other applications.

1

F6 Installation ease. 0.5

F7 Operational ease, usability. 0.5

F8 Portability. 2

F9 Changeability. 1

F10 Concurrency. 1

F11 Special security features. 1

F12 Provide direct access for third parties 1

F13 Special user training facilities 1

TABLE IV. ENVIRONMENTAL COMPLEXITY FACTORS [4]

iF Factors Contributing to Efficiency Wi

F1 Familiar with RUP 1.5

F2
Part time workers -1

F3
Analyst capability 0.5

F4
Application experience 0.5

F5
Object oriented experience 1

F6
Motivation 1

F7
Difficult programming language -1

F8
Stable requirements 2

IV. PROPOSED WORK

In our research we have introduced six new external factors,
which we believe are strongly related to the development
environment and can be helpful for getting more accurate and
precise result. We have proposed the equation for calculating
the ECF by adding our proposed factors with the existing
factors proposed by Karner. So the number of factors became
14 and the equation is ;

 ECF=1.4 + (-0.03) 


14

1

*
i

WiFi

TABLE V. NEW ENVIRONMENTAL FACTORS

 Fi Suggested Environmental factors Weight (Wi)

F9 Client Type 1.2
F10 New Technology 1
F11 Team Co-ordination 1.5
F12 Growth Rate of Organization 0.5
F13 Team Composition 1.5
F14 Organization Library Availability -0.5

The steps for calculating Use case point (UCP) remains same
as of Karner.

V. DISCUSSION

This research is exploratory in nature. We have assigned
weights to each factor in a similar way to existing factors
based on historical data. Traditionally, each factor is rated
from zero to five, a rating of zero means the factor is
irrelevant for this project, three means it is average and five
means it is essential. Another point to be addressed is how to
weight these new factors. It should be apparent that the
weighted values used to modify the influence of each factor,
so deriving the weight value must go through a well-defined
process. A slight variation in the value of weight will
dramatically increase use case points and therefore the total
project effort. Even small adjustment, for instance half point,
will vary the final result by 40%[6]. However, this means that
inappropriate environmental weight factors will lead to
catastrophic results.

Pragya Jha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 2742-2744

www.ijcsit.com 2743

VI. CONCLUSION

This paper exemplified and highlighted the importance of
UCP in software effort estimation. The authors addressed
new modified sets of environment factors, which they believe
will be able to give more accurate and precise result for the
use case point method. The evaluation of this model is left for
future work because this research is still at the data capturing
stage.

REFERENCES

[1] B. Boehm, "Software Engineering Economics",Prentice Hall,
1981.

[2] B. Boehm et al.,"Software Cost Estimation with COCOMO II " ,
Prentice Hall Englewood Cliffs, NJ, 2000.

[3] N. J. Nunes et al., "iUCP: Estimating Interactive- Software Project
Size with Enhanced Use-Case Points", IEEE Software, 2011.

[4] G. Karner, "Metrics for Objectory", Diploma thesis,University of
Linköping, Sweden. No. LiTHIDA- Ex- 9344:21.December 1993.

[5] Q. Yu et al., " Application of Estimating Based on Use Cases in
Software Industry ", 7th International Conference on Wireless
Communications, Networking and Mobile Computing
(WiCOM), 2011.

[6] K. Ribu, " Estimating Object-Oriented Software Projects with Use
Cases", in Department of Informatics, University of Oslo, 2001.

Pragya Jha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 2742-2744

www.ijcsit.com 2744

